World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

3-d Reflection Seismic Imaging of the Hontomín Structure in the Basque–cantabrian Basin (Spain) : Volume 4, Issue 2 (09/12/2013)

By Alcalde, J.

Click here to view

Book Id: WPLBN0004021180
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: 3-d Reflection Seismic Imaging of the Hontomín Structure in the Basque–cantabrian Basin (Spain) : Volume 4, Issue 2 (09/12/2013)  
Author: Alcalde, J.
Volume: Vol. 4, Issue 2
Language: English
Subject: Science, Solid, Earth
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Malehmir, A., Pérez-Estaún, A., Marzán, I., Saura, E., Ayarza, P., Carbonell, R.,...Martí, D. (2013). 3-d Reflection Seismic Imaging of the Hontomín Structure in the Basque–cantabrian Basin (Spain) : Volume 4, Issue 2 (09/12/2013). Retrieved from

Description: Institute of Earth Sciences Jaume Almera CSIC, Barcelona, Spain. The Basque–Cantabrian Basin of the northern Iberia Peninsula constitutes a unique example of a major deformation system, featuring a dome structure developed by extensional tectonics followed by compressional reactivation. The occurrence of natural resources in the area and the possibility of establishing a geological storage site for carbon dioxide motivated the acquisition of a 3-D seismic reflection survey in 2010, centered on the Jurassic Hontomín dome. The objectives of this survey were to obtain a geological model of the overall structure and to establish a baseline model for a possible geological CO2 storage site. The 36 km2 survey included approximately 5000 mixed (Vibroseis and explosives) source points recorded with a 25 m inline source and receiver spacing. The target reservoir is a saline aquifer, at approximately 1450 m depth, encased and sealed by carbonate formations. Acquisition and processing parameters were influenced by the rough topography and relatively complex geology. A strong near-surface velocity inversion is evident in the data, affecting the quality of the data. The resulting 3-D image provides constraints on the key features of the geologic model. The Hontomín structure is interpreted to consist of an approximately 107 m2 large elongated dome with two major (W–E and NW–SE) striking faults bounding it. Preliminary capacity estimates indicate that about 1.2 Gt of CO2 can be stored in the target reservoir.

3-D reflection seismic imaging of the Hontomín structure in the Basque–Cantabrian Basin (Spain)

Alcalde, J., Martí, D., Calahorrano, A., Marzán, I., Ayarza, P., Carbonell, R., Juhlin, C., and Pérez-Estaún, A.: Active seismic characterization experiments of the Hontomín research facility for geological storage of CO2, Spain, Int. J. Greenh. Gas Con., in press, doi:10.1016/j.ijggc.2013.01.039, 2013.; Alvarez, C.: Hydrocarbons in Spain – exploration and production, First Break, 12, 1994.; Arts, R., Eiken, O., Chadwick, A., Zweigel, P., van der Meer, L., and Zinszner, B.: Monitoring of CO2 injected at Sleipner using time-lapse seismic data, Energy, 29, 1383–1392, 2004.; Ashton, P., Bacon, B., Deplante, C., Sinclair, D. T., and Redekop, G.: 3-D seismic survey design, Oilfield Review, 19–32, 1994.; Braaksma, H., Proust, J. N., Kenter, J. A. M., Drijkoningen, G. G., and Filippidou, N.: Sedimentological, Petrophysical, and Seismic Characterization of an Upper Jurassic Shoreface-Dominated Shelf Margin (the Boulonnais, Northern France), J. Sediment. Res., 76, 175–199, 2006.; Baines, S. J. and Worden, R. H.: Geological Storage of Carbon Dioxide, Geol. Soc. Lond., Special Publications, 233, 1–6, 2004.; Braun, J., Batt, G. E, Scott, D. J., McQueen, H., and Beaseley, R.: A simple kinematic model for crustal deformation along two- and three- dimensional listric normal faults derived from scaled laboratory experiments, J. Struct. Geol., 16, 1477–1490, 1994.; Beroiz, C. and Permanyer, A.: Hydrocarbon habitat of the Sedano trough, Basque-Cantabrian Basin, Spain, J. Pet. Geol., 34, 387–410, doi:10.1111/j.1747-5457.2011.00511.x, 2011.; Orr, F.: Storage of Carbon Dioxide in geologic Formations, J. Petrol. Technol., 56, 90–97, 2004.; Phipps, G. G.: Exploring for dolomitized Slave Point carbonates in northeastern British Columbia, Geophysics, 54, 806–814, 1989.; Canal, J., Falcón, I., Barrientos, V., Juncosa, R., and Delgado, J.: Injection of reactive fluids in geological reservoirs: The coupling between rock reactivity, hydrodynamics and petrophysics, DHI/Fluid Consortium Meeting Fall 2012, Colorado School of Mines, Abstract paper, 2012.; Cosgrove, J. W. and Ameen, M. S.: Forced Folds and Fractures. Geological Society, London, Special Publications, 169, The Geol. Soc. Lond., 2000.; Elío, J, Nisi, B, Ortega, M. F., Mazadiego, L. F, Vaselli, O., and Grandia, F.: CO2 soil flux baseline at the Technological Development Plant for CO2 Injection at Hontomin (Burgos, Spain), Int. J. Greenh. Gas Con., 18, 224–236, 2013.; Erlich, R. N., Barrett, S. F., and Bai Ju Guo: Seismic and geologic characteristics of drowning events on carbonate platforms, AAPG Bulletin, 74 1523–1537, 1990.; Feroci, F., Orlando, L., Balia, R., Bosman, C., Cardarelli, E., and Deidda, G.: Some considerations on shallow seismic reflection surveys, J. Appl. Geophys., 45, 127–139, 2000.; Förster, A., Norden, B., Zinck-Jørgensen, K., Frykman, P., Kulenkampss, J., Spangerberg, E., Erzinger, J., Zimmer, M., Kopp, J., Borm, G., Julin, C., Cosma, C., and Hurter, S.: Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany, Environ. Geosci., 13, 145–161, 2006.; García-Ríos, M., Luquot, L., Soler, J. M., and Cama, J.: Laboratory-scale interaction between CO2-rich brine and reservoir rocks (limestone and sandstone), Procedia Earth and Planetary Science, 7, 109–112, 2013.; Hale, D. and Artley, C.: Squeezing dip moveout for depth-variable velocity, Geophysics, 58, 257–264, 1993.; Jin, G. and Groshong, R. H.: Trishear kinematic modeling of extensional fault-propagation folding, J. Struct. Geol., 28 170–183, 2006.; Juhlin, C.: Imaging of fracture zones in the Finnsjön area, central Sweden, using the seismic reflection method, Geophysics 60, 66–75, 1995.; Juhlin, C., Giese, R., Zinck-Jørgensen, K., Cosma, C., Kaze


Click To View

Additional Books

  • A Lithosphere-scale Structural Model of ... (by )
  • Simulation of Seismic Waves at the Earth... (by )
  • Instaseis: Instant Global Seismograms Ba... (by )
  • Thickness of the Lithosphere Beneath Tur... (by )
  • New Developments in the Analysis of Colu... (by )
  • Syn-eruptive, Soft-sediment Deformation ... (by )
  • Active-layer Thermal Monitoring on the F... (by )
  • Quantification of Magma Ascent Rate Thro... (by )
  • Positive Geothermal Anomalies in Oceanic... (by )
  • Does Jatropha Curcas L. Show Resistance ... (by )
  • The Microstructural Record of Porphyrocl... (by )
  • Dinsar Coseismic Deformation of the May ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.