World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Deriving a Sea Surface Climatology of Co2 Fugacity in Support of Air–sea Gas Flux Studies : Volume 11, Issue 4 (28/07/2014)

By Goddijn-murphy, L. M.

Click here to view

Book Id: WPLBN0004020796
Format Type: PDF Article :
File Size: Pages 54
Reproduction Date: 2015

Title: Deriving a Sea Surface Climatology of Co2 Fugacity in Support of Air–sea Gas Flux Studies : Volume 11, Issue 4 (28/07/2014)  
Author: Goddijn-murphy, L. M.
Volume: Vol. 11, Issue 4
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Land, P. E., Shutler, J. D., Woolf, D. K., Goddijn-Murphy, L. M., & Donlon, C. (2014). Deriving a Sea Surface Climatology of Co2 Fugacity in Support of Air–sea Gas Flux Studies : Volume 11, Issue 4 (28/07/2014). Retrieved from http://worldlibrary.net/


Description
Description: ERI, University of the Highlands and Islands, Ormlie Road, Thurso, UK. Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2) Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air–sea CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air–sea CO2 flux, and hence the presented fCO2 distributions can be used in air–sea gas flux calculations together with climatologies of other climate variables.

Summary
Deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies

Excerpt
Dlugokencky, E. J., Masarie, K. A., Lang, P. M., and Tans, P. P.: NOAA Greenhouse Gas Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, available at: ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (last access: 27 July 2014), 2014.; Donlon, C. J., Nightingale, P. D., Sheasby, T., Turner, J., Robinson, I. S., and Emery, J.: Implications of the oceanic thermal skin temperature deviation at high wind speeds, Geophys. Res. Lett., 26, 2505–2508, 1999.; Donlon, C. J., Minnett, P., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, J.: Towards improved validation of satellite sea surface skin temperature measurements for climate research, J. Climate, 15, 353–369, 2002.; Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, M., Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.: An update to the Surface Ocean CO2 Atlas (SOCAT version 2), Earth Syst. Sci. Data, 6, 69–90, doi:10.5194/essd-6-69-2014, 2014.; Donlon, C., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E., Arino, O., Gentemann, C., May, D., Leborgne, P., Piollé, J., Barton, I., Beggs, H., Poulter, D. J. S., Merchant, C. J., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewwellyn-Jones, D., Mutlow, C., Reynolds, R. W., Kawamura, H., and Rayner, N.: The GODAE High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP), B. Am. Meteorol. Soc., 88, 1197–1213, 2007.; Emery, W. J., Cherkauer, K., Shannon, B., and Reynolds, R. W.: Hull-mounted sea surface temperatures from ships of opportunity, J. Atmos. Ocean. Tech., 14, 1237–1251, 2.0.CO;2>doi:10.1175/1520-0426(1997)014<1237:HMSSTF>2.0.CO;2, 1997.; Emery, W. J., Baldwin, D. J., Schlüssel, P., and Reynolds, R. W.: Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements, J. Geophys. Res., 106, 2387–2405, doi:10.1029/2000JC000246, 2001.; Fangohr, S. and Woolf, D. K.: Application of new parameterization of gas transfer velocity and their impact on regional and global marine CO2 budgets, J. Marine Syst., 66, 195–203, 2007.; Jeffery, C. D., Woolf, D. K., Robinson, I. S., and Donlon, C. J.: One-dimensional modelling of convective CO2 exchange in the Tropical Atlantic, Ocean Model., 19, 161–182, 2007.; Jeffery, C. D., Robinson, I., Woolf, D. K., and Donlon, C. J.: The response to phase-dependent wind stress and cloud fraction of the diurnal cycle of SST and air–sea CO2 exchange, Ocean Model., 23, 33–48, 2008.; Kawai, Y. and Wada, A.: Diur

 

Click To View

Additional Books


  • Numerical Implementation and Oceanograph... (by )
  • M3A System (2000–2005) – Operation and M... (by )
  • Preface an Historical Perspective on the... (by )
  • Changes in Ventilation of the Mediterran... (by )
  • Characterization of Ascat Measurements B... (by )
  • Mixed Layer Mesoscales: a Parameterizati... (by )
  • Seasonal and Inter-annual Temperature Va... (by )
  • Entrainment in the Denmark Strait Overfl... (by )
  • Possible Signals of Poleward Surface Oce... (by )
  • Precipitation of Solid Phase Calcium Car... (by )
  • Variational Assimilation of Lagrangian T... (by )
  • Atmospheric Forcing by Aladin/Mfstep and... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.