World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A Data Assimilation Method of the Ensemble Kalman Filter for Use in Severe Dust Storm Forecasts Over China : Volume 7, Issue 6 (03/12/2007)

By Lin, C.

Click here to view

Book Id: WPLBN0003997842
Format Type: PDF Article :
File Size: Pages 26
Reproduction Date: 2015

Title: A Data Assimilation Method of the Ensemble Kalman Filter for Use in Severe Dust Storm Forecasts Over China : Volume 7, Issue 6 (03/12/2007)  
Author: Lin, C.
Volume: Vol. 7, Issue 6
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2007
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Zhu, J., Wang, Z., & Lin, C. (2007). A Data Assimilation Method of the Ensemble Kalman Filter for Use in Severe Dust Storm Forecasts Over China : Volume 7, Issue 6 (03/12/2007). Retrieved from http://worldlibrary.net/


Description
Description: LAPC/NZC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. An Ensemble Kalman Filter (EnKF) data assimilation system was developed for a regional dust transport model. This paper applied the EnKF method to investigate modeling severe dust storm episodes occurred in March 2002 over China based on surface observations of dust concentrations to explore its impacts on forecast improvement. A series of sensitivity experiments using our system reveals that the EnKF is an advanced assimilation method to afford better initial conditions with surface observed PM10 in North China and lead to improved forecasts of dust storms, but forecast with large errors can be made by model errors. This result illustrates that it requires identifying and correcting model errors during the assimilation procedure in order to significantly improve forecasts. Results also show that the EnKF should use a large inflation parameter to obtain better model performance and forecast potential. Furthermore, the ensemble perturbations generated at the initial time should include enough ensemble spreads to represent the background error after several assimilation cycles.

Summary
A data assimilation method of the Ensemble Kalman Filter for use in severe dust storm forecasts over China

Excerpt
Evensen, G.: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10 143–10 162, 1994.; Evensen, G.: The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation, Ocean Dynam., 53, 343–367, 2003.; Evensen, G.: Data Assimilation: The Ensemble Kalman Tilter, Springer, German, 2006.; Houtekamer, P. L. and Mitchell, H. L.: Data assimilation using an Ensemble Kalman Filter technique, Mon. Wea. Rev., 126, 796–811, 1998.; Gong, S. L., Zhang, X. Y., Zhao, T. L., McKendry, I. G., Jaffe, D. A., and Lu, N. M.: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation, J. Geophys. Res., 108, 4262, doi:10.1029/2002JD002633, 2003.; Han, Z. W., Ueda, H., Matsuda, K., Zhang, R. J., Arao, K., Kanai, Y., and Hasome, H.: Model study on particle size segregation and deposition during Asian dust events in March 2002, J. Geophys. Res., 109, doi:10.1029/2004JD004920, 2004.; Houtekamer, P. L. and Mitchell, H. L.: A sequential Ensemble Kalman Filter for atmospheric data assimilation, Mon. Wea. Rev., 129, 123–137, 2001.; Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., and Hansen, B.: Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations, Mon. Wea. Rev., 133, 604–620, 2005.; Lorenc, A. C.: The potential of the Ensemble Kalman Filter for NWP–a comparison with 4D-Var, Q. J. R. Meteorol. Soc., 129, 3183–3203, 2003.; Liu, M. L., Westphal, D. L., Wang, S. G., Shimizu, A., Sugimoto, N., Zhou, J., and Chen, Y.: A high-resolution numerical study of the Asian dust storms of April 2001, J. Geophys. Res., 108, 8653, doi:10.1029/2002JD003178, 2003.; Sun, Y., Zhuang, G., Yuan, H., Zhang, X., and Guo, J.: Characteristics and sources of 2002 super dust storm in Beijing, Chinese Sci. Bull., 49, 7, 698–705, 2002.; Lu, H. and Shao Y. P.: Toward quantitative prediction of dust strorms: an integrated wind erosion modeling system and its application, Environ. Modell. Softw., 16 233–16 249, 2001.; Mitchell, H. L. and Houtekamer, P. L.: An Adaptive Ensemble Kalman Filter, Mon. Wea. Rev., 28, 416–433, 2000.; Mitchell, H. L., Houtekamer, P. L., and Pelerin, G.: Ensemble size, balance, and model error representation in an Ensemble Kalman Filter, Mon. Wea. Rev., 130, 2791–2808, 2002.; Mori, I., Nishikawa, M., Quan, H., and Morita, M.: Estimation of the concentration and chemical composition of kosa aerosols at their origin, Atmos. Environ., 36, 4569–4575, 2002.; Murayama, T., Sugimoto, N., Uno. I., Kinoshita, K., Aoki, K., Hagiwara, N., Liu, Z., Matsui, I., Sakai, T., Shibata, T., Arao, K., Shon, B. J., Won, J. G., Yoon, S. C., Li, T., Zhou, J., Hu, H., Abo, M., Iokibe, K., Koga, R., and Iwasaka, Y.: Ground-Based Network Observation of Asian Dust Events of April 1998 in East Asia, J. Geophys. Res., 106, 18 345–18 359, 2001.; Niu, T., Gong, S. L., Zhu, G. F., Liu, H. L., Hu, X. Q., Zhou, C. H., and Wang, Y. Q.: Data assimilation of dust aerosol observations for CUACE/Dust forecasting system, Atmos. Chem. Phys. Discuss., 7, 8309–8332, 2007.; Park, S. U. and In, H. J.: Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea, J. Geophys. Res., 108, 4618, doi:10.1029/2003JD003484, 2003.; Shao, Y.: A model of mineral dust emission, J. Geophys. Res., 106, 20 239–20 254, 2001.; Shao, Y. P., Yang, Y., Wang, J. J., Song, Z. X., Leslie, L M., Dong, C. H., Zhang, Z. H., Lin, Z. H., Kanai, Y., Yabuki, S., and Chun, Y.: Northeast Asian dust storms: Real-time numerical prediction and validation, J. Geophys. Res., 108, 4691, doi:10.1029/2003JD003667, 2003.; Song, C. H. and Carmichael, G. R.: A three-dimensional m

 

Click To View

Additional Books


  • Ozone and NoX Chemistry in the Eastern U... (by )
  • Thermodynamic Properties and Cloud Dropl... (by )
  • Regional Lightning NoX Sources During th... (by )
  • Effect of Photochemical Aging on the Ice... (by )
  • Primary Productivity and Its Variability... (by )
  • Relating Aerosol Absorption Due to Soot,... (by )
  • Comparison of High-latitude Line-of-sigh... (by )
  • Investigation of the Effective Peak Supe... (by )
  • A Two-habit Model for the Microphysical ... (by )
  • A Product Study of the Isoprene+no3 Reac... (by )
  • What's the Real Role of Iron-oxides in t... (by )
  • Aerosol Seasonal Variability Over the Me... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.