World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A Product Study of the Isoprene+no3 Reaction : Volume 9, Issue 14 (24/07/2009)

By Perring, A. E.

Click here to view

Book Id: WPLBN0003994948
Format Type: PDF Article :
File Size: Pages 12
Reproduction Date: 2015

Title: A Product Study of the Isoprene+no3 Reaction : Volume 9, Issue 14 (24/07/2009)  
Author: Perring, A. E.
Volume: Vol. 9, Issue 14
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Wisthaler, A., Wooldridge, P. J., Graus, M., Mielke, L. H., Shepson, P. B., Perring, A. E.,...Hansel, A. (2009). A Product Study of the Isoprene+no3 Reaction : Volume 9, Issue 14 (24/07/2009). Retrieved from http://worldlibrary.net/


Description
Description: Department of Chemistry, University of California Berkeley, Berkeley, CA, USA. Oxidation of isoprene through reaction with NO3 radicals is a significant sink for isoprene that persists after dark. The main products of the reaction are multifunctional nitrates. These nitrates constitute a significant NOx sink in the nocturnal boundary layer and they likely play an important role in formation of secondary organic aerosol. Products of the isoprene+NO3 reaction will, in many locations, be abundant enough to affect nighttime radical chemistry and to persist into daytime where they may represent a source of NOx. Product formation in the isoprene + NO3 reaction was studied in a smog chamber at Purdue University. Isoprene nitrates and other hydrocarbon products were observed using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and reactive nitrogen products were observed using Thermal Dissociation–Laser Induced Fluorescence (TD-LIF). The organic nitrate yield is found to be 65±12% of which the majority was nitrooxy carbonyls and the combined yield of methacrolein and methyl vinyl ketone (MACR+MVK) is found to be ∼10%. PTR-MS measurements of nitrooxy carbonyls and TD-LIF measurements of total organic nitrates agreed well. The PTR-MS also observed a series of minor oxidation products which were tentatively identified and their yields quantified These other oxidation products are used as additional constraints on the reaction mechanism.

Summary
A product study of the isoprene+NO3 reaction

Excerpt
Aoki, N., Inomata, S., and Tanimoto, H.: Detection of C-1-C-5 alkyl nitrates by proton transfer reaction time-of-flight mass spectrometry, Int. J. Mass Spectron., 263, 12–21, 2007.; Apel, E. C., Brauers, T., Koppmann, R., Bandowe, B., Bossmeyer, J., Holzke, C., Tillmann, R., Wahner, A., Wegener, R., Brunner, A., Jocher, M., Ruuskanen, T., Spirig, C., Steigner, D., Steinbrecher, R., Alvarez, E. G., Muller, K., Burrows, J. P., Schade, G., Solomon, S. J., Ladstatter-Weissenmayer, A., Simmonds, P., Young, D., Hopkins, J. R., Lewis, A. C., Legreid, G., Reimann, S., Hansel, A., Wisthaler, A., Blake, R. S., Ellis, A. M., Monks, P. S., and Wyche, K. P.: Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber, J. Geophys. Res.-Atmos., 113, D20307, doi:10.1029/2008JD009865, 2008.; Barnes, I., Bastian, V., Becker, K. H., and Tong, Z.: Kinetics and products of the reactions of NO3 with monoalkenes, dialkenes, and monoterpenes, J. Phys. Chem., 94, 2413–2419, 1990.; Berndt, T. and Boge, O.: Gas-phase reaction of NO3 radicals with isoprene: A kinetic and mechanistic study, Int. J. Chem. Kinet., 29, 755–765, 1997.; Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, 2001.; Bohringer, H., Fahey, D. W., Fehsenfeld, F. C., and Ferguson, E. E.: The role of ion molecule reactions in the conversion of N2O5 to HNO3 in the stratosphere, Planet. Space Sci., 31, 185–191, 1983.; Chen, X. H., Hulbert, D., and Shepson, P. B.: Measurement of the organic nitrate yield from OH reaction with isoprene, J. Geophys. Res. Atmos., 103, 25563–25568, 1998.; Chu, P. M., Thorn, W. J., Sams, R. L., and Guenther, F. R.: On-demand generation of a formaldehyde-in-air standard, J. Res. Nat. Inst. Stand., 102, 559–568, 1997.; D'Anna, B., Wisthaler, A., Andreasen, O., Hansel, A., Hjorth, J., Jensen, N. R., Nielsen, C. J., Stenstrom, Y., and Viidanoja, J.: Atmospheric chemistry of C-3-C-6 cycloalkanecarbaldehydes, J. Phys. Chem. A, 109, 5104–5118, 2005.; Dassau, T. M., Sumner, A. L., Koeniger, S. L., Shepson, P. B., Yang, J., Honrath, R. E., Cullen, N. J., Steffen, K., Jacobi, H. W., Frey, M., and Bales, R. C.: Investigation of the role of the snowpack on atmospheric formaldehyde chemistry at Summit, Greenland, J. Geophys. Res. Atmos., 107, 4394, doi:10.1029/2002JD002182, 2002.; Dlugokencky, E. J. and Howard, C. J.: Studies Of NO3 Radical Reactions With Some Atmospheric Organic-Compounds At Low-Pressures, J. Phys. Chem., 93, 1091–-1096, 1989.; Davidson, J. A., Viggiano, A. A., Howard, C. J., Dotan, I., Fehsenfeld, F. C., Albritton, D. L., and Ferguson, E. E.: Rate Constants For Reactions Of O2+, NO2+, NO+, H3O+, CO3-, NO2-, And Halide Ions With N2O5 At 300 K, J. Chem. Phys., 68, 2085–2087, 1978.; Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3, J. Geophys. Res. Atmos., 107, 4046, doi:10.1029/2001JD000779, 2002.; de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrometry Reviews, 26, 223–257, 2007.; Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., and Trainer, M.: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430, 1992.; Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Tayl

 

Click To View

Additional Books


  • Multi-decadal Aerosol Variations from 19... (by )
  • The Arctic Summer Cloud-ocean Study (Asc... (by )
  • Systematic Satellite Observations of the... (by )
  • Characterization of Ozone Profiles Deriv... (by )
  • Modeling the Chemical Effects of Ship Ex... (by )
  • Importance of Aerosols for Annual Lightn... (by )
  • How Important is the Vertical Structure ... (by )
  • High Resolution Modelling of Aerosol Dis... (by )
  • Interpreting the Cloud Cover – Aerosol O... (by )
  • Corrigendum to “overview of the Field Me... (by )
  • The Role of Semi-volatile Organic Compou... (by )
  • Long Term Measurements of Submicrometer ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.