World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Tropospheric Aerosol Microphysics Simulation with Assimilated Meteorology: Model Description and Intermodel Comparison : Volume 8, Issue 12 (24/06/2008)

By Trivitayanurak, W.

Click here to view

Book Id: WPLBN0003981815
Format Type: PDF Article :
File Size: Pages 20
Reproduction Date: 2015

Title: Tropospheric Aerosol Microphysics Simulation with Assimilated Meteorology: Model Description and Intermodel Comparison : Volume 8, Issue 12 (24/06/2008)  
Author: Trivitayanurak, W.
Volume: Vol. 8, Issue 12
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Adams, P. J., Spracklen, D. V., Carslaw, K. S., & Trivitayanurak, W. (2008). Tropospheric Aerosol Microphysics Simulation with Assimilated Meteorology: Model Description and Intermodel Comparison : Volume 8, Issue 12 (24/06/2008). Retrieved from http://worldlibrary.net/


Description
Description: Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. We implement the TwO-Moment Aerosol Sectional (TOMAS) microphysics module into GEOS-CHEM, a CTM driven by assimilated meteorology. TOMAS has 30 size sections covering 0.01–10 μm diameter with conservation equations for both aerosol mass and number. The implementation enables GEOS-CHEM to simulate aerosol microphysics, size distributions, mass and number concentrations. The model system is developed for sulfate and sea-salt aerosols, a year-long simulation has been performed, and results are compared to observations. Additionally model intercomparison was carried out involving global models with sectional microphysics: GISS GCM-II' and GLOMAP. Comparison with marine boundary layer observations of CN10 and CCN(0.2%) shows that all models perform well with average errors of 30–50%. However, all models underpredict CN10 by up to 42% between 15° S and 45° S while overpredicting CN10 up to 52% between 45° N and 60° N, which could be due to the sea-salt emission parameterization and the assumed size distribution of primary sulfate emission, in each case respectively. Model intercomparison at the surface shows that GISS GCM-II' and GLOMAP, each compared against GEOS-CHEM, both predict 40% higher CN10 and predict 20% and 30% higher CCN(0.2%) on average, respectively. Major discrepancies are due to different emission inventories and transport. Budget comparison shows GEOS-CHEM predicts the lowest global CCN(0.2%) due to microphysical growth being a factor of 2 lower than other models because of lower SO2 availability. These findings stress the need for accurate meteorological inputs, updated emission inventories, and realistic clouds and oxidant fields when evaluating global aerosol microphysics models.

Summary
Tropospheric aerosol microphysics simulation with assimilated meteorology: model description and intermodel comparison

Excerpt
Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res.-Atmos., 107, 4370, doi:10.1029/2001JD001010, 2002.; Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, 1989.; Adams, P. J. and Seinfeld, J. H.: Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations, Geophys. Res. Lett., 30, 1239, doi:10.1029/2002GL016303, 2003.; Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos., 110, D10307, doi:10.1029/2004JD005659, 2005.; Allen, D. J., Rood, R. B., Thompson, A. M., and Hudson, R. D.: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm, J. Geophys. Res.-Atmos., 101, 6871–6881, 1996.; Andreae, M. O., Elbert, W., and Demora, S. J.: Biogenic Sulfur Emissions and Aerosols over the Tropical South-Atlantic 3. Atmospheric Dimethylsulfide, Aerosols and Cloud Condensation Nuclei, J. Geophys. Res.-Atmos., 100, 11 335–11 356, 1995.; Barrie, L. A., Yi, Y., Leaitch, W. R., Lohmann, U., Kasibhatla, P., Roelofs, G. J., Wilson, J., McGovern, F., Benkovitz, C., Melieres, M. A., Law, K., Prospero, J., Kritz, M., Bergmann, D., Bridgeman, C., Chin, M., Christensen, J., Easter, R., Feichter, J., Land, C., Jeuken, A., Kjellstrom, E., Koch, D., and Rasch, P.: A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highlights, Tellus B, 53, 615–645, 2001.; Bates, T. S., Huebert, B. J., Gras, J. L., Griffiths, F. B., and Durkee, P. A.: International Global Atmospheric Chemistry (IGAC) project's first aerosol characterization experiment (ACE 1): Overview, J. Geophys. Res.-Atmos., 103, 16 297–16 318, 1998.; Bates, T. S., Quinn, P. K., Coffman, D. J., Johnson, J. E., Miller, T. L., Covert, D. S., Wiedensohler, A., Leinert, S., Nowak, A., and Neususs, C.: Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview, J. Geophys. Res.-Atmos., 106, 20 767–20 782, 2001.; Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23 073–23 095, 2001.; Boucher, O. and Lohmann, U.: The Sulfate-Ccn-Cloud Albedo Effect – a Sensitivity Study with 2 General-Circulation Models, Tellus B, 47, 281–300, 1995.; Carpenter, R. L., Droegemeier, K. K., Woodward, P. R., and Hane, C. E.: Application of the Piecewise Parabolic Method (Ppm) to Meteorological Modeling, Mon. Weather Rev., 118, 586–612, 1990.; Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols, Science, 255, 423–430, 1992.; Chin, M., Rood, R. B., Lin, S. J., Muller, J. F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res.-Atmos., 105, 24 671–24 687, 2000.; Clarke, A. D., Ahlquist, N. C., and Covert, D. S.: The Pacific Marine Aerosol – Evidence for Natural Acid Sulfates, J. Geophys. Res.-Atmos., 92, 4179–4190, 1987.; Clarke, A. D., Owens, S. R., and Zhou, J. C.: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere, J. Geophys. Res.-Atmos., 111, 2006.; Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (Ppm) for Gas-Dynamical Simulations, J. Comput. Phys., 54, 174–201, 1984.; Covert, D. S., Kapustin, V. N., Bates, T. S., and Quinn, P. K.: Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorol

 

Click To View

Additional Books


  • Eclipse Effects on Field Crops and Marin... (by )
  • Relative Humidity-dependent Viscosities ... (by )
  • Organic Aerosol Formation from the React... (by )
  • Explaining Global Surface Aerosol Number... (by )
  • Measurement from Sun-synchronous Orbit o... (by )
  • Isoprene Oxidation Products Are a Signif... (by )
  • A Global Historical Ozone Data Set and P... (by )
  • Technical Note: the Heterogeneous Zeldov... (by )
  • Henry's Law Constants of Diacids and Hyd... (by )
  • Comparison and Synergy of Stratospheric ... (by )
  • Modeling and Evaluation of the Global Se... (by )
  • Particle Size Distributions from Laborat... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.